| miRNA | gene name | experiments | ||||||
|---|---|---|---|---|---|---|---|---|
| hsa-miR-103b | E2F3 |
|
||||||
| hsa-miR-103b | RPL7L1 |
|
||||||
| hsa-miR-103b | SPG20 |
|
||||||
| hsa-miR-103b | ZNRF3 |
|
||||||
| hsa-miR-103b | OSBPL10 |
|
||||||
| hsa-miR-103b | ZNF212 |
|
||||||
| hsa-miR-103b | LAMA4 |
|
||||||
| hsa-miR-103b | ZNF281 |
|
||||||
| hsa-miR-103b | TSPAN1 |
|
||||||
| hsa-miR-103b | LIN54 |
|
||||||
| hsa-miR-103b | IFFO2 |
|
||||||
| hsa-miR-103b | NPY4R |
|
||||||
| hsa-miR-103b | GLDN |
|
||||||
| hsa-miR-103b | TMEM245 |
|
||||||
| hsa-miR-103b | SESTD1 |
|
||||||
| hsa-miR-103b | SREK1IP1 |
|
||||||
| hsa-miR-103b | C1orf43 |
|
||||||
| hsa-miR-103b | NUFIP2 |
|
||||||
| hsa-miR-103b | FRK |
|
||||||
| hsa-miR-103b | PPIL3 |
|
||||||
| hsa-miR-103b | PLXNA2 |
|
||||||
| hsa-miR-103b | GNAT1 |
|
||||||
| hsa-miR-103b | WIPI2 |
|
||||||
| hsa-miR-103b | CA12 |
|
||||||
| hsa-miR-103b | SRP9 |
|
||||||
| hsa-miR-103b | HCFC2 |
|
||||||
| hsa-miR-103b | SAE1 |
|
||||||
| hsa-miR-103b | DMTF1 |
|
||||||
| hsa-miR-103b | CD2AP |
|
||||||
| hsa-miR-103b | ZNF567 |
|
||||||
| hsa-miR-103b | PPM1A |
|
||||||
| hsa-miR-103b | FOXK1 |
|
||||||
| hsa-miR-103b | ZNF556 |
|
||||||
| hsa-miR-103b | AKR7L |
|
||||||
| hsa-miR-103b | CEP89 |
|
||||||
| hsa-miR-103b | GSN |
|
||||||
| hsa-miR-103b | PLXDC2 |
|
||||||
| hsa-miR-103b | CMBL |
|
||||||
| hsa-miR-103b | PPM1L |
|
||||||
| hsa-miR-103b | HSD17B12 |
|
||||||
| hsa-miR-103b | TDRD1 |
|
||||||
| hsa-miR-103b | ELK1 |
|
||||||
| hsa-miR-103b | STON2 |
|
||||||
| hsa-miR-103b | CRY2 |
|
||||||
| hsa-miR-103b | NCBP3 |
|
||||||
| hsa-miR-103b | DCAF17 |
|
||||||
| hsa-miR-103b | RS1 |
|
||||||
| hsa-miR-103b | KIAA1143 |
|
||||||
| hsa-miR-103b | PIGP |
|
||||||
| hsa-miR-103b | MSL1 |
|
||||||
| hsa-miR-103b | SPECC1 |
|
||||||
| hsa-miR-103b | IL12B |
|
| authors | journal | year | Pubmed link | title | |
|---|---|---|---|---|---|
| 1 | Kishore et al. | Nat. Methods | 2011 | 21572407 | A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. |
| 2 | Hafner et al. | Cell | 2010 | 20371350 | Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. |
| 3 | Gottwein et al. | Cell Host Microbe | 2011 | 22100165 | Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. |
| 4 | Skalsky et al. | PLoS Pathog. | 2012 | 22291592 | The viral and cellular microRNA targetome in lymphoblastoid cell lines. |
| 5 | Majoros et al. | Nat. Methods | 2013 | 23708386 | MicroRNA target site identification by integrating sequence and binding information. |
| 6 | Whisnant et al. | MBio | 2013 | 23592263 | In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. |
| 7 | Farazi et al. | Genome Biol. | 2014 | 24398324 | Identification of distinct miRNA target regulation between breast cancer molecular subtypes using AGO2-PAR-CLIP and patient datasets. |
| 8 | Memczak et al. | Nature | 2013 | 23446348 | Circular RNAs are a large class of animal RNAs with regulatory potency. |
| 9 | Lipchina et al. | Genes Dev. | 2011 | 22012620 | Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. |
| 10 | Kishore et al. | Genome Biol. | 2013 | 23706177 | Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing. |
| 11 | Karginov et al. | Genes Dev. | 2013 | 23824327 | Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. |
| 12 | Xue et al. | Cell | 2013 | 23313552 | Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. |
| 13 | Chi et al. | Nature | 2009 | 19536157 | Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. |