| miRNA | gene name | experiments | ||||||
|---|---|---|---|---|---|---|---|---|
| hsa-miR-136-3p | CANX |
|
||||||
| hsa-miR-136-3p | HNRNPC |
|
||||||
| hsa-miR-136-3p | ZRANB1 |
|
||||||
| hsa-miR-136-3p | UBE3C |
|
||||||
| hsa-miR-136-3p | TGFBR3 |
|
||||||
| hsa-miR-136-3p | GTF2F1 |
|
||||||
| hsa-miR-136-3p | FMN1 |
|
||||||
| hsa-miR-136-3p | COPS4 |
|
||||||
| hsa-miR-136-3p | CAND1 |
|
||||||
| hsa-miR-136-3p | C1orf43 |
|
||||||
| hsa-miR-136-3p | ASAP1 |
|
||||||
| hsa-miR-136-3p | RWDD2A |
|
||||||
| hsa-miR-136-3p | PRPF38B |
|
||||||
| hsa-miR-136-3p | STX11 |
|
||||||
| hsa-miR-136-3p | SOX11 |
|
||||||
| hsa-miR-136-3p | MUC20 |
|
||||||
| hsa-miR-136-3p | MYLK |
|
||||||
| hsa-miR-136-3p | OPN5 |
|
||||||
| hsa-miR-136-3p | DVL3 |
|
||||||
| hsa-miR-136-3p | CREBRF |
|
||||||
| hsa-miR-136-3p | PARP11 |
|
||||||
| hsa-miR-136-3p | SCN1B |
|
||||||
| hsa-miR-136-3p | UHMK1 |
|
||||||
| hsa-miR-136-3p | SOX5 |
|
||||||
| hsa-miR-136-3p | HOXA9 |
|
||||||
| hsa-miR-136-3p | KLHL28 |
|
||||||
| hsa-miR-136-3p | C1orf21 |
|
||||||
| hsa-miR-136-3p | G6PC |
|
||||||
| hsa-miR-136-3p | PAOX |
|
||||||
| hsa-miR-136-3p | PHF1 |
|
||||||
| hsa-miR-136-3p | REL |
|
||||||
| hsa-miR-136-3p | HOXB6 |
|
||||||
| hsa-miR-136-3p | PLXDC2 |
|
||||||
| hsa-miR-136-3p | FAM227A |
|
||||||
| hsa-miR-136-3p | TTLL7 |
|
||||||
| hsa-miR-136-3p | RAB3GAP2 |
|
||||||
| hsa-miR-136-3p | KDM5A |
|
||||||
| hsa-miR-136-3p | ERP44 |
|
||||||
| hsa-miR-136-3p | NUDT16 |
|
||||||
| hsa-miR-136-3p | POLR3D |
|
||||||
| hsa-miR-136-3p | PPIP5K2 |
|
||||||
| hsa-miR-136-3p | TRAF1 |
|
||||||
| hsa-miR-136-3p | IQGAP1 |
|
||||||
| hsa-miR-136-3p | CAVIN1 |
|
| authors | journal | year | Pubmed link | title | |
|---|---|---|---|---|---|
| 1 | Kameswaran et al. | Cell Metab. | 2014 | 24374217 | Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. |
| 2 | Kishore et al. | Genome Biol. | 2013 | 23706177 | Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing. |
| 3 | Kishore et al. | Nat. Methods | 2011 | 21572407 | A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. |
| 4 | Skalsky et al. | PLoS Pathog. | 2012 | 22291592 | The viral and cellular microRNA targetome in lymphoblastoid cell lines. |
| 5 | Memczak et al. | Nature | 2013 | 23446348 | Circular RNAs are a large class of animal RNAs with regulatory potency. |
| 6 | Hafner et al. | Cell | 2010 | 20371350 | Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. |
| 7 | Lipchina et al. | Genes Dev. | 2011 | 22012620 | Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. |
| 8 | Whisnant et al. | MBio | 2013 | 23592263 | In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. |
| 9 | Farazi et al. | Genome Biol. | 2014 | 24398324 | Identification of distinct miRNA target regulation between breast cancer molecular subtypes using AGO2-PAR-CLIP and patient datasets. |
| 10 | Majoros et al. | Nat. Methods | 2013 | 23708386 | MicroRNA target site identification by integrating sequence and binding information. |
| 11 | Xue et al. | Cell | 2013 | 23313552 | Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. |
| 12 | Karginov et al. | Genes Dev. | 2013 | 23824327 | Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. |
| 13 | Chi et al. | Nature | 2009 | 19536157 | Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. |