| miRNA | gene name | experiments | ||||||
|---|---|---|---|---|---|---|---|---|
| hsa-miR-660-5p | HUWE1 |
|
||||||
| hsa-miR-660-5p | YWHAH |
|
||||||
| hsa-miR-660-5p | GALNT7 |
|
||||||
| hsa-miR-660-5p | STARD7 |
|
||||||
| hsa-miR-660-5p | COL4A3BP |
|
||||||
| hsa-miR-660-5p | FBXO28 |
|
||||||
| hsa-miR-660-5p | E2F3 |
|
||||||
| hsa-miR-660-5p | ZFYVE26 |
|
||||||
| hsa-miR-660-5p | CRIPT |
|
||||||
| hsa-miR-660-5p | XRRA1 |
|
||||||
| hsa-miR-660-5p | UGCG |
|
||||||
| hsa-miR-660-5p | MYH11 |
|
||||||
| hsa-miR-660-5p | DYNLL2 |
|
||||||
| hsa-miR-660-5p | C2CD4B |
|
||||||
| hsa-miR-660-5p | MECP2 |
|
||||||
| hsa-miR-660-5p | BZW1 |
|
||||||
| hsa-miR-660-5p | XKR7 |
|
||||||
| hsa-miR-660-5p | PMAIP1 |
|
||||||
| hsa-miR-660-5p | C18orf25 |
|
||||||
| hsa-miR-660-5p | UBE2K |
|
||||||
| hsa-miR-660-5p | NUP50 |
|
||||||
| hsa-miR-660-5p | NAP1L1 |
|
||||||
| hsa-miR-660-5p | C1orf56 |
|
||||||
| hsa-miR-660-5p | TMLHE |
|
||||||
| hsa-miR-660-5p | UBA6 |
|
||||||
| hsa-miR-660-5p | SEC22C |
|
||||||
| hsa-miR-660-5p | MED10 |
|
||||||
| hsa-miR-660-5p | WNK3 |
|
||||||
| hsa-miR-660-5p | ENPP5 |
|
||||||
| hsa-miR-660-5p | YTHDF1 |
|
||||||
| hsa-miR-660-5p | EIF1 |
|
||||||
| hsa-miR-660-5p | CCDC47 |
|
||||||
| hsa-miR-660-5p | ZHX1 |
|
||||||
| hsa-miR-660-5p | PCSK2 |
|
||||||
| hsa-miR-660-5p | HNRNPA1 |
|
||||||
| hsa-miR-660-5p | FAM221B |
|
||||||
| hsa-miR-660-5p | SMN1 |
|
||||||
| hsa-miR-660-5p | SMN2 |
|
||||||
| hsa-miR-660-5p | LANCL3 |
|
||||||
| hsa-miR-660-5p | MED28 |
|
||||||
| hsa-miR-660-5p | ABCA12 |
|
||||||
| hsa-miR-660-5p | MYOCD |
|
||||||
| hsa-miR-660-5p | ARL4C |
|
||||||
| hsa-miR-660-5p | ARHGEF12 |
|
||||||
| hsa-miR-660-5p | ADM |
|
||||||
| hsa-miR-660-5p | CERS4 |
|
||||||
| hsa-miR-660-5p | ATP13A4 |
|
| authors | journal | year | Pubmed link | title | |
|---|---|---|---|---|---|
| 1 | Helwak et al. | Cell | 2013 | 23622248 | Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. |
| 2 | Hafner et al. | Cell | 2010 | 20371350 | Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. |
| 3 | Kishore et al. | Nat. Methods | 2011 | 21572407 | A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. |
| 4 | Lipchina et al. | Genes Dev. | 2011 | 22012620 | Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. |
| 5 | Whisnant et al. | MBio | 2013 | 23592263 | In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. |
| 6 | Karginov et al. | Genes Dev. | 2013 | 23824327 | Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. |
| 7 | Gottwein et al. | Cell Host Microbe | 2011 | 22100165 | Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. |
| 8 | Majoros et al. | Nat. Methods | 2013 | 23708386 | MicroRNA target site identification by integrating sequence and binding information. |
| 9 | Memczak et al. | Nature | 2013 | 23446348 | Circular RNAs are a large class of animal RNAs with regulatory potency. |
| 10 | Chi et al. | Nature | 2009 | 19536157 | Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. |
| 11 | Xue et al. | Cell | 2013 | 23313552 | Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. |