| miRNA | gene name | experiments | ||||||
|---|---|---|---|---|---|---|---|---|
| hsa-miR-200a-5p | BICRA |
|
||||||
| hsa-miR-200a-5p | FOXC1 |
|
||||||
| hsa-miR-200a-5p | UHMK1 |
|
||||||
| hsa-miR-200a-5p | SUB1 |
|
||||||
| hsa-miR-200a-5p | OLA1 |
|
||||||
| hsa-miR-200a-5p | GRPEL2 |
|
||||||
| hsa-miR-200a-5p | ZNF99 |
|
||||||
| hsa-miR-200a-5p | FCHO2 |
|
||||||
| hsa-miR-200a-5p | METTL7A |
|
||||||
| hsa-miR-200a-5p | ATAD5 |
|
||||||
| hsa-miR-200a-5p | CS |
|
||||||
| hsa-miR-200a-5p | RGL2 |
|
||||||
| hsa-miR-200a-5p | XBP1P1 |
|
||||||
| hsa-miR-200a-5p | CLIP1 |
|
||||||
| hsa-miR-200a-5p | C11orf74 |
|
||||||
| hsa-miR-200a-5p | ZNF90 |
|
||||||
| hsa-miR-200a-5p | ZNF117 |
|
||||||
| hsa-miR-200a-5p | CYP4F11 |
|
||||||
| hsa-miR-200a-5p | CEBPG |
|
||||||
| hsa-miR-200a-5p | CDCA4 |
|
||||||
| hsa-miR-200a-5p | ZNF138 |
|
||||||
| hsa-miR-200a-5p | IL12RB2 |
|
||||||
| hsa-miR-200a-5p | ZNF639 |
|
||||||
| hsa-miR-200a-5p | WWTR1 |
|
||||||
| hsa-miR-200a-5p | OTX1 |
|
||||||
| hsa-miR-200a-5p | PMEPA1 |
|
||||||
| hsa-miR-200a-5p | THAP5 |
|
||||||
| hsa-miR-200a-5p | ZNF675 |
|
||||||
| hsa-miR-200a-5p | ZNF254 |
|
||||||
| hsa-miR-200a-5p | ZNF431 |
|
||||||
| hsa-miR-200a-5p | PPA1 |
|
||||||
| hsa-miR-200a-5p | IGF2BP1 |
|
||||||
| hsa-miR-200a-5p | PLEKHG7 |
|
||||||
| hsa-miR-200a-5p | YAE1D1 |
|
||||||
| hsa-miR-200a-5p | SLC5A8 |
|
||||||
| hsa-miR-200a-5p | APOL6 |
|
||||||
| hsa-miR-200a-5p | WNT16 |
|
||||||
| hsa-miR-200a-5p | ZMAT4 |
|
||||||
| hsa-miR-200a-5p | PLAG1 |
|
||||||
| hsa-miR-200a-5p | CPS1 |
|
||||||
| hsa-miR-200a-5p | SOD2 |
|
||||||
| hsa-miR-200a-5p | SRXN1 |
|
||||||
| hsa-miR-200a-5p | SKIL |
|
||||||
| hsa-miR-200a-5p | KLF10 |
|
||||||
| hsa-miR-200a-5p | HHIP |
|
||||||
| hsa-miR-200a-5p | COBLL1 |
|
||||||
| hsa-miR-200a-5p | GRHL1 |
|
||||||
| hsa-miR-200a-5p | CKS2 |
|
||||||
| hsa-miR-200a-5p | SOX17 |
|
| authors | journal | year | Pubmed link | title | |
|---|---|---|---|---|---|
| 1 | Hafner et al. | Cell | 2010 | 20371350 | Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. |
| 2 | Whisnant et al. | MBio | 2013 | 23592263 | In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. |
| 3 | Memczak et al. | Nature | 2013 | 23446348 | Circular RNAs are a large class of animal RNAs with regulatory potency. |
| 4 | Gottwein et al. | Cell Host Microbe | 2011 | 22100165 | Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. |
| 5 | Xue et al. | Cell | 2013 | 23313552 | Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. |
| 6 | Skalsky et al. | PLoS Pathog. | 2012 | 22291592 | The viral and cellular microRNA targetome in lymphoblastoid cell lines. |
| 7 | Kishore et al. | Nat. Methods | 2011 | 21572407 | A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. |
| 8 | Farazi et al. | Genome Biol. | 2014 | 24398324 | Identification of distinct miRNA target regulation between breast cancer molecular subtypes using AGO2-PAR-CLIP and patient datasets. |
| 9 | Lipchina et al. | Genes Dev. | 2011 | 22012620 | Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. |
| 10 | Chi et al. | Nature | 2009 | 19536157 | Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. |
| 11 | Karginov et al. | Genes Dev. | 2013 | 23824327 | Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. |