| miRNA | gene name | experiments | ||||||
|---|---|---|---|---|---|---|---|---|
| hsa-miR-425-3p | HIST2H2AA3 |
|
||||||
| hsa-miR-425-3p | PKN1 |
|
||||||
| hsa-miR-425-3p | KLHL15 |
|
||||||
| hsa-miR-425-3p | HIST1H4C |
|
||||||
| hsa-miR-425-3p | ARID3A |
|
||||||
| hsa-miR-425-3p | ATMIN |
|
||||||
| hsa-miR-425-3p | PPARGC1A |
|
||||||
| hsa-miR-425-3p | KDM5C |
|
||||||
| hsa-miR-425-3p | C1orf35 |
|
||||||
| hsa-miR-425-3p | MDH2 |
|
||||||
| hsa-miR-425-3p | HSPA1B |
|
||||||
| hsa-miR-425-3p | CAPNS1 |
|
||||||
| hsa-miR-425-3p | GABPB2 |
|
||||||
| hsa-miR-425-3p | ZNF703 |
|
||||||
| hsa-miR-425-3p | MECP2 |
|
||||||
| hsa-miR-425-3p | XPO5 |
|
||||||
| hsa-miR-425-3p | GCN1 |
|
||||||
| hsa-miR-425-3p | RAC1 |
|
||||||
| hsa-miR-425-3p | SESN2 |
|
||||||
| hsa-miR-425-3p | FAM208A |
|
||||||
| hsa-miR-425-3p | SYCE1L |
|
||||||
| hsa-miR-425-3p | SPSB1 |
|
||||||
| hsa-miR-425-3p | ZNF28 |
|
||||||
| hsa-miR-425-3p | HDLBP |
|
||||||
| hsa-miR-425-3p | PLCG2 |
|
||||||
| hsa-miR-425-3p | NCAPG2 |
|
||||||
| hsa-miR-425-3p | MTHFD2 |
|
||||||
| hsa-miR-425-3p | ZNF460 |
|
||||||
| hsa-miR-425-3p | VAV3 |
|
||||||
| hsa-miR-425-3p | TFIP11 |
|
||||||
| hsa-miR-425-3p | ISLR2 |
|
||||||
| hsa-miR-425-3p | WDR73 |
|
||||||
| hsa-miR-425-3p | EMC2 |
|
||||||
| hsa-miR-425-3p | PER2 |
|
||||||
| hsa-miR-425-3p | BAZ2B |
|
||||||
| hsa-miR-425-3p | PTDSS2 |
|
||||||
| hsa-miR-425-3p | NDUFA7 |
|
||||||
| hsa-miR-425-3p | GATA6 |
|
||||||
| hsa-miR-425-3p | ZNF260 |
|
||||||
| hsa-miR-425-3p | MICA |
|
||||||
| hsa-miR-425-3p | GNAS |
|
||||||
| hsa-miR-425-3p | PTPRF |
|
||||||
| hsa-miR-425-3p | PSME3 |
|
| authors | journal | year | Pubmed link | title | |
|---|---|---|---|---|---|
| 1 | Helwak et al. | Cell | 2013 | 23622248 | Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. |
| 2 | Memczak et al. | Nature | 2013 | 23446348 | Circular RNAs are a large class of animal RNAs with regulatory potency. |
| 3 | Hafner et al. | Cell | 2010 | 20371350 | Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. |
| 4 | Kishore et al. | Nat. Methods | 2011 | 21572407 | A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. |
| 5 | Whisnant et al. | MBio | 2013 | 23592263 | In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. |
| 6 | Farazi et al. | Genome Biol. | 2014 | 24398324 | Identification of distinct miRNA target regulation between breast cancer molecular subtypes using AGO2-PAR-CLIP and patient datasets. |
| 7 | Kishore et al. | Genome Biol. | 2013 | 23706177 | Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing. |
| 8 | Pillai et al. | Breast Cancer Res. Treat. | 2014 | 24906430 | HITS-CLIP reveals key regulators of nuclear receptor signaling in breast cancer. |
| 9 | Karginov et al. | Genes Dev. | 2013 | 23824327 | Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. |
| 10 | Xue et al. | Cell | 2013 | 23313552 | Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. |
| 11 | Chi et al. | Nature | 2009 | 19536157 | Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. |